Integrated molecular imaging reveals tissue heterogeneity driving host-pathogen interactions

Authors

Cassat JE James E , Moore JL Jessica L , Wilson KJ Kevin J , Stark Z Zach , Prentice BM Boone M , Van de Plas R Raf , Perry WJ William J , Zhang Y Yaofang , Virostko J John , Colvin DC Daniel C , Rose KL Kristie L , Judd AM Audra M , Reyzer ML Michelle L , Spraggins JM Jeffrey M , Grunenwald CM Caroline M , Gore JC John C , Caprioli RM Richard M , Skaar EP Eric P .
Science translational medicine. 2018 3 14; 10(432).

Abstract

Diseases are characterized by distinct changes in tissue molecular distribution. Molecular analysis of intact tissues traditionally requires preexisting knowledge of, and reagents for, the targets of interest. Conversely, label-free discovery of disease-associated tissue analytes requires destructive processing for downstream identification platforms. Tissue-based analyses therefore sacrifice discovery to gain spatial distribution of known targets or sacrifice tissue architecture for discovery of unknown targets. To overcome these obstacles, we developed a multimodality imaging platform for discovery-based molecular histology. We apply this platform to a model of disseminated infection triggered by the pathogen , leading to the discovery of infection-associated alterations in the distribution and abundance of proteins and elements in tissue in mice. These data provide an unbiased, three-dimensional analysis of how disease affects the molecular architecture of complex tissues, enable culture-free diagnosis of infection through imaging-based detection of bacterial and host analytes, and reveal molecular heterogeneity at the host-pathogen interface.