Deprecated: Optional parameter $limit declared before required parameter $showlink is implicitly treated as a required parameter in /var/www/m_lab.dev.vanderbilt.edu/wp-content/plugins/wp-pubmed-reflist/class.wpPubMedRefList.php on line 27

Deprecated: Optional parameter $subset declared before required parameter $showlink is implicitly treated as a required parameter in /var/www/m_lab.dev.vanderbilt.edu/wp-content/plugins/wp-pubmed-reflist/class.wpPubMedRefList.php on line 27

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the sgg domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/m_lab.dev.vanderbilt.edu/wp-includes/functions.php on line 6114
The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. | Broadie Laboratory | Vanderbilt University Skip to main content

The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons.


AUTHORS

Tessier CRCharles R , Broadie K Kendal . Neurobiology of disease. 2011 1 ; 41(1). 147-59

ABSTRACT

Fragile X syndrome (FXS) is a broad-spectrum neurological disorder characterized by hypersensitivity to sensory stimuli, hyperactivity and severe cognitive impairment. FXS is caused by loss of the fragile X mental retardation 1 (FMR1) gene, whose FMRP product regulates mRNA translation downstream of synaptic activity to modulate changes in synaptic architecture, function and plasticity. Null Drosophila FMR1 (dfmr1) mutants exhibit reduced learning and loss of protein synthesis-dependent memory consolidation, which is dependent on the brain mushroom body (MB) learning and memory center. We targeted a transgenic GFP-based calcium reporter to the MB in order to analyze calcium dynamics downstream of neuronal activation. In the dfmr1 null MB, there was significant augmentation of the calcium transients induced by membrane depolarization, as well as elevated release of calcium from intracellular organelle stores. The severity of these calcium signaling defects increased with developmental age, although early stages were characterized by highly variable, low fidelity calcium regulation. At the single neuron level, both calcium transient and calcium store release defects were exhibited by dfmr1 null MB neurons in primary culture. Null dfmr1 mutants exhibit reduced brain mRNA expression of calcium-binding proteins, including calcium buffers calmodulin and calbindin, predicting that the inability to appropriately sequester cytosolic calcium may be the common mechanistic defect causing calcium accumulation following both influx and store release. Changes in the magnitude and fidelity of calcium signals in the absence of dFMRP likely contribute to defects in neuronal structure/function, leading to the hallmark learning and memory dysfunction of FXS.


Fragile X syndrome (FXS) is a broad-spectrum neurological disorder characterized by hypersensitivity to sensory stimuli, hyperactivity and severe cognitive impairment. FXS is caused by loss of the fragile X mental retardation 1 (FMR1) gene, whose FMRP product regulates mRNA translation downstream of synaptic activity to modulate changes in synaptic architecture, function and plasticity. Null Drosophila FMR1 (dfmr1) mutants exhibit reduced learning and loss of protein synthesis-dependent memory consolidation, which is dependent on the brain mushroom body (MB) learning and memory center. We targeted a transgenic GFP-based calcium reporter to the MB in order to analyze calcium dynamics downstream of neuronal activation. In the dfmr1 null MB, there was significant augmentation of the calcium transients induced by membrane depolarization, as well as elevated release of calcium from intracellular organelle stores. The severity of these calcium signaling defects increased with developmental age, although early stages were characterized by highly variable, low fidelity calcium regulation. At the single neuron level, both calcium transient and calcium store release defects were exhibited by dfmr1 null MB neurons in primary culture. Null dfmr1 mutants exhibit reduced brain mRNA expression of calcium-binding proteins, including calcium buffers calmodulin and calbindin, predicting that the inability to appropriately sequester cytosolic calcium may be the common mechanistic defect causing calcium accumulation following both influx and store release. Changes in the magnitude and fidelity of calcium signals in the absence of dFMRP likely contribute to defects in neuronal structure/function, leading to the hallmark learning and memory dysfunction of FXS.


Tags:

Leave a Response


Warning: Undefined variable $user_ID in /var/www/m_lab.dev.vanderbilt.edu/wp-content/themes/ANCHORDOWN-Vanderbilt/comments.php on line 62