Deprecated: Optional parameter $limit declared before required parameter $showlink is implicitly treated as a required parameter in /var/www/m_lab.dev.vanderbilt.edu/wp-content/plugins/wp-pubmed-reflist/class.wpPubMedRefList.php on line 27

Deprecated: Optional parameter $subset declared before required parameter $showlink is implicitly treated as a required parameter in /var/www/m_lab.dev.vanderbilt.edu/wp-content/plugins/wp-pubmed-reflist/class.wpPubMedRefList.php on line 27

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the sgg domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/m_lab.dev.vanderbilt.edu/wp-includes/functions.php on line 6114
Establishing and sculpting the synapse in Drosophila and C. elegans. | Broadie Laboratory | Vanderbilt University Skip to main content

Establishing and sculpting the synapse in Drosophila and C. elegans.


AUTHORS

Broadie KSKendal S , Richmond JE Janet E . Current opinion in neurobiology. 2002 10 ; 12(5). 491-8

ABSTRACT

Genetic approaches in flies and worms continue to dissect the intricate molecular machinery of chemical synapses. Investigations carried out in the last year provide important new insights into the development and modulation of the presynaptic active zones and postsynaptic receptor fields mediating synaptic function. Mutant screens have identified overlapping gene classes mediating synaptogenesis. The leucocyte common antigen-related receptor tyrosine phosphatase interacts with liprin in the formation of the active zone. Spectrins are essential for the spatial restriction of synaptic proteins to define active zones. Glutamate acts as a negative regulator of its cognate postsynaptic receptor to sculpt receptor field size. Finally, protein translation and degradation regulation emerge as possible key regulators of synaptic efficacy.


Genetic approaches in flies and worms continue to dissect the intricate molecular machinery of chemical synapses. Investigations carried out in the last year provide important new insights into the development and modulation of the presynaptic active zones and postsynaptic receptor fields mediating synaptic function. Mutant screens have identified overlapping gene classes mediating synaptogenesis. The leucocyte common antigen-related receptor tyrosine phosphatase interacts with liprin in the formation of the active zone. Spectrins are essential for the spatial restriction of synaptic proteins to define active zones. Glutamate acts as a negative regulator of its cognate postsynaptic receptor to sculpt receptor field size. Finally, protein translation and degradation regulation emerge as possible key regulators of synaptic efficacy.


Tags:

Leave a Response


Warning: Undefined variable $user_ID in /var/www/m_lab.dev.vanderbilt.edu/wp-content/themes/ANCHORDOWN-Vanderbilt/comments.php on line 62