Deprecated: Optional parameter $limit declared before required parameter $showlink is implicitly treated as a required parameter in /var/www/m_lab.dev.vanderbilt.edu/wp-content/plugins/wp-pubmed-reflist/class.wpPubMedRefList.php on line 27

Deprecated: Optional parameter $subset declared before required parameter $showlink is implicitly treated as a required parameter in /var/www/m_lab.dev.vanderbilt.edu/wp-content/plugins/wp-pubmed-reflist/class.wpPubMedRefList.php on line 27

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the sgg domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/m_lab.dev.vanderbilt.edu/wp-includes/functions.php on line 6114
Cellular bases of activity-dependent paralysis in Drosophila stress-sensitive mutants. | Broadie Laboratory | Vanderbilt University Skip to main content

Cellular bases of activity-dependent paralysis in Drosophila stress-sensitive mutants.


AUTHORS

Trotta NNick , Rodesch CK Chris K , Fergestad T Tim , Broadie K Kendal . Journal of neurobiology. 2004 9 5; 60(3). 328-47

ABSTRACT

Stress-sensitive mutants in Drosophila have been shown to exhibit activity-dependent defects in neurotransmission. Using the neuromuscular junction (NMJ), this study investigates synaptic function more specifically in two stress-sensitive mutants: stress-sensitive B (sesB), which encodes a mitochondrial ADP/ATP translocase (ANT); and Atpalpha(2206), a conditional mutant of the Na+/K+ ATPase alpha-subunit. Mechanical shock induces a period of brief paralysis in both homozygous and double heterozygous mutants, but further analysis revealed distinct activity-dependent neurotransmission lesions in each mutant. Basal neurotransmission appeared similar to wild-type controls in both mutants under low frequency stimulation. High frequency stimulation, however, caused pronounced synaptic fatigue as well as slow and incomplete synaptic recovery in sesB mutants while Atpalpha(2206) mutants displayed an increase (25-fold) in synaptic failures. Perhaps to compensate for these activity dependent defects, the neuromuscular synapse was found to be overgrown in both mutants. Passive electrotonic stimulation, which initiates synaptic transmission independent of action potentials, ameliorated synaptic failures and resulted in increased neurotransmission amplitude in Atpalpha(2206) mutants. In addition, spontaneous synaptic vesicle fusion rates were increased in Atpalpha(2206) mutants, suggesting that, in the absence of action potential requirements, these synaptic terminals are healthy, if not hyperactive. Dye labeling studies revealed aberrant synaptic vesicle cycling in sesB mutants indicating a reduction of functional synaptic vesicles. We therefore postulate that both stress-sensitive mutants harbor unique neurotransmission defects: Atpalpha(2206) mutants are unable to maintain ionic gradients required during repetitive action potential propagation, and sesB mutants cannot maintain synaptic vesicle cycling during periods of high demand.


Stress-sensitive mutants in Drosophila have been shown to exhibit activity-dependent defects in neurotransmission. Using the neuromuscular junction (NMJ), this study investigates synaptic function more specifically in two stress-sensitive mutants: stress-sensitive B (sesB), which encodes a mitochondrial ADP/ATP translocase (ANT); and Atpalpha(2206), a conditional mutant of the Na+/K+ ATPase alpha-subunit. Mechanical shock induces a period of brief paralysis in both homozygous and double heterozygous mutants, but further analysis revealed distinct activity-dependent neurotransmission lesions in each mutant. Basal neurotransmission appeared similar to wild-type controls in both mutants under low frequency stimulation. High frequency stimulation, however, caused pronounced synaptic fatigue as well as slow and incomplete synaptic recovery in sesB mutants while Atpalpha(2206) mutants displayed an increase (25-fold) in synaptic failures. Perhaps to compensate for these activity dependent defects, the neuromuscular synapse was found to be overgrown in both mutants. Passive electrotonic stimulation, which initiates synaptic transmission independent of action potentials, ameliorated synaptic failures and resulted in increased neurotransmission amplitude in Atpalpha(2206) mutants. In addition, spontaneous synaptic vesicle fusion rates were increased in Atpalpha(2206) mutants, suggesting that, in the absence of action potential requirements, these synaptic terminals are healthy, if not hyperactive. Dye labeling studies revealed aberrant synaptic vesicle cycling in sesB mutants indicating a reduction of functional synaptic vesicles. We therefore postulate that both stress-sensitive mutants harbor unique neurotransmission defects: Atpalpha(2206) mutants are unable to maintain ionic gradients required during repetitive action potential propagation, and sesB mutants cannot maintain synaptic vesicle cycling during periods of high demand.


Tags:

Leave a Response


Warning: Undefined variable $user_ID in /var/www/m_lab.dev.vanderbilt.edu/wp-content/themes/ANCHORDOWN-Vanderbilt/comments.php on line 62